English Version
    • 上海光源介绍
    • 历史进程
    • 机构设置
    • 地理位置
    • 相关网站
    • 电子邮箱
    • 加速器
    • 光束线站
    • BL08U1-A
    • BL08U1-B
    • BL13W1
    • BL14W1
    • BL14B1
    • BL15U1
    • BL16B1
    • BL17U1
    • BL09U
    • BL01B1
    • BL17B1
    • BL18U1
    • BL19U1
    • BL19U2
    • 用户办公室
    • 机时申请
    • 运行实时状态
    • 供光机时表
    • 用户统计
    • 用户之声
    • 用户常见问题
    • 技术发展
    • 研究亮点
    • 论文
    • 专利
    • 获奖
    • 头条新闻
    • 图片新闻
    • 新闻报道
    • 公告通知
    • 媒体聚焦
    • 会议专题
    • 学术活动
    • 合作交流
    • 科普片
    • 科普园地
    • 画册
    • 简报
    • 通讯
    • 年报
    • 成果汇编
科学研究
  • 技术发展
  • 研究亮点
  • 论文
  • 专利
  • 获奖
您现在的位置:首页 > 研究亮点
纳秒时间分辨X射线激发发光实验方法在上海光源BL14W1线站实现
2014/07/11 | 【 大 中 小】 【打印】 【关闭】

近日,在中国科学院上海应用物理研究所束线控制组、加速器物理组、XAFS组以及苏州大学孙旭辉课题组相互合作下,基于上海光源BL14W1线站XEOL(X Ray Excited Optical luminescence)实验装置,在国内同步辐射装置上首次实现了纳秒时间分辨X射线激发发光光谱(Time-Resolved XEOL)实验方法。 

上海光源是第三代同步辐射光源,其高亮度、储存环电子束团的脉冲时间结构以及同步辐射X射线能量连续可调等特点,为TRXEOL实验技术的实现提供了良好的基础。整套TRXEOL实验装置由定时系统、光谱仪系统和核电子学系统三部分组成。TRXEOL实验技术是利用同步辐射X射线脉冲激发样品,在其后200ns左右的时间间隔内测量、记录并分析样品发光衰减过程。该技术,通过调节同步辐射X射线的能量,选择性地激发样品中不同的元素,进而可以确定样品的发光中心,与发光产额的XAFS方法相结合,可以进一步确定发光材料中发光体的局域结构,为深入理解发光材料的发光行为提供重要的研究手段,特别是对研究具有复杂结构的发光材料,例如:纳米半导体材料、稀土闪烁材料、有机电致发光材料(OLED)、分子指示剂(生物研究中的光学标记和其他的软物质)等发光材料的发光机理,具有非常强大有效的作用。这些材料在光电器件、传感、平板显示、医学标记等很多领域都有广泛的应用。 

 

 

 

 TRXEOL实验装置实物图

单束团时间结构图 

  

储存环电子束团填充情况

为了实现纳秒量级时间分辨率的TRXEOL技术,解决了两个关键问题:其一,储存环电子束团实现了混合填充模式。加速器物理组在有限的机器研究时间内,经过紧张调试,实现了一种混合填充模式(5mA单束团和225mA多束团,单束团前后的时间间隔约220ns),该模式已经达到基本实验要求。既能够提供满足要求的单束团及其前后的时间间隔,束流强度又能够保证其它光束线站正常运行;其二,标定了储存环的时间结构以及精确地确定了样品的发光时间,定时系统是上海光源主定时系统在光束线站的延伸,提供的同步触发脉冲信号与单束团产生的X射线脉冲通过延时在样品点同步,同步精度可达6ps。 

TRXEOL实验方法的实现得到了973项目“纳米材料的同步辐射表征技术”、加拿大光源T.K.sham教授的大力支持。 (材料与能源部 供稿)



ZnO
样品不同时间窗口的时间分辨XEOL谱 

    

相关附件
Copyright 2007.4 中国科学院上海高等研究院 备案号:沪ICP备14026862号-1 浦东新区张衡路239号 (201204)